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“The	mathematician	needs	no	laboratories	or	supplies.	A		
	
piece	of	paper,	a	pencil,	and	creative	powers	form	the		
	
foundation	of	his	work”.		
	
	

Alexander	Khinchin.	
	
	
	

	
	
	
	
	
	



2018	-2019	
	

	
	

Gaussian	Group	members	held	several	meetings	this	year.	
	



Gaussian	Group	meetings	started	with	the	Random	Number	Generators	this	year.		
	
	
On	the	philosophical	side,	we	explored	the	followings:	
	
What	is	randomness?	Is	it	lack	of	causal	relations?	Is	it	a	property	of	mind	or	is	it	a	
property	of	the	universe?	If	it	is	a	property	of	mind	then	if	were	intelligent	enough,	
could	we	see	a	pattern,	for	example	in	the	decimal	expansion	of	Pi?	If	randomness	is	
a	property	of	the	universe	that	is	randomness	exists	in	the	absence	of	human	mind,	
then	whole	mathematical	physics	is	mere	illusion.	That	is	human	mind	connects	
unconnected	events	to	make	sense	of	it.		
	
Can	we	sensibly	talk	about	one	thing	being	only	a	property	of	mind	or	solely	being	
property	of	the	universe?	Are	we	not	a	part	of	the	universe?	Heisenberg	tried	to	
separate	quantum	from	classical,	Heisenberg’s	cut.	Can	we	separate	our	mind	from	
the	universe?		
	
On	the	mathematical	side	we	explored	and	investigated	normal	and	random	
numbers.		
	
A	number	is	said	to	be	normal	to	base	b	if	its	base-b	expansion	has	each	digit	
appearing	with	average	frequency	tending	to	b^(-1),	e.g.	0,1,2…,9.	Prob	is	1/10	in	
base	10.	Intuitively	this	means	that	no	digit,	or	(finite)	combination	of	digits,	occurs	
more	frequently	than	any	other,	and	this	is	true	whether	the	number	is	written	in	
base	10,	binary,	or	any	other	base.	A	normal	number	can	be	thought	of	as	an	infinite	
sequence	of	coin	flips	(binary)	or	rolls	of	a	die	(base	6).	
	
It	is	widely	believed	that	the	(computable)	numbers	√2,	π,	and	e	are	normal,	but	a	
proof	remains	elusive.	
	
This	definition	turns	out	to	be	counter	intuitive.	For	example,	½	is	not	a	normal	
number	because	½	=	0.5000000000...	we	are	certain	that	the	next	digit	will	be	zero.		
0.238526262626…	is	also	not	a	normal	number.		
	
An	example	of	normal	numbers	would	be		
0.123456789	10	11	12	13	14	…	normal	in	base	10	
	
It	is	widely	believed	that	Pi	is	a	normal	number.		
	
This	talk	was	concluded	by	investigating	how	quantum	mechanics	uses	radioactive	
decay	and	Eigenstate	of	the	wave	function	to	generate	random	numbers.	
	
	
	
	
	
		



	
	
	

	
Student	Presentations	

	
There	were	several	student	presentations	this	year.	
	
Charles	Xu	(Upper	Sixth,	Bruce):	Pascal's	Triangle	and	connecting	different	branches	
of	mathematics. 
	
	
Jack	Boswell	"The	Black	Scholes	Model"	strong	connection	between	mathematics	
and	economics. 
	
	
Special	thanks	to	Mr	Stanworth	for	his	very	interesting	talk	on	‘Can	Chimpanzees	Do	
Algebra?’	
	
In	his	talk,	Mr	Stanworth	connected	mathematics	with	experimental	psychology.	
What	do	studies	with	primates	teach	us	about	mathematical	cognition,	and	the	
capabilities	of	our	own	brains?	We'll	look	at	how	research	methods	in	psychology	are	
developing	our	understanding	of	how	we	process	mathematics	in	our	own	grey	
matter.	



	
	
	
	
Rufus	Esdale	on	Gambling	and	Cameron	on	the	History	of	the	Universe.	
	
	
Andy	Wu	(Upper	Sixth,	Grenville)	gave	a	very	interesting	and	thought	provoking	talk	
on	Probability	and	Randomness.	When	a	fair,	six	sided	die	is	thrown,	P(5	or	any	other	
number)	=	1/6.	But	when	die	is	thrown	twice,	P(5,5)	significantly	differs	from	P(5).	
Andy	questioned	whether	objects	have	memory.	
	
Rohan	Sekhri	and	Poom	Narongpun	(Upper	Sixth	Walpole),	presented	Bayesian	
Statistics.	
	
	
Wei	Lang	Zhao	(Upper	Sixth,	Grenville)		on	Large	numbers.	
	
	
We	thank	all	our	speakers	for	their	time,	effort	and	interesting	talks.	

	
	

	
	
	
	



	
Movie	and	Pizza	Night	

	

	
Gaussian	Group’s	last	event	was	Pizza	&	Movie	night	this	academic	year.	Member	
enjoyed	and	celebrated	the	end	of	year	by	watching	Good	Will	Hunting.	

	
Special	thank	you	to	Henrietta	Gendler	for	organising	this	event.	

	

	
	
	



	



Predator-Prey	Modelling	
	

Mathematical	Modelling	
Mathematical	models	are	descriptions	of	a	system	
using	 mathematical	 concepts	 and	 language.	
Seemingly	 simple	 and	 mundane	 in	 the	 A-Level	
curriculum,	 true	 mathematical	 modelling	 entails	
more	than	meets	the	eye,	with	every	system	being	
very	 different	 in	 terms	 of	 its	 properties	 -	 many	
characteristics	 must	 be	 considered,	 such	 as	
linearity	 and	 non-linearity,	 static	 and	 dynamic	
behaviour	 and	 whether	 randomness	 is	 present	
(whether	 it	 is	 a	 deterministic	 or	 stochastic	
system).		

	

With	advancements	in	technology	seemingly	arising	more	and	more,	the	field	
of	mathematical	modelling	has	become	its	own	discipline,	with	it	being	used	to	
extend	human	knowledge	of	almost	all	 fields,	whether	 it	be	predicting	where	
riots	 will	 occur	 in	 South	 America,	 studying	 the	 behaviour	 of	 black	 holes,	 or	
even	 observing	 the	 behaviour	 of	 predator-prey	 cycles.	 Modelling	 the	 most	
seemingly	 ordinary	 natural	 phenomena	 such	 as	 bird	 flocking	 can	 be	 used	 to	
develop	models	for	fluid	dynamics,	and	it	is	this	transferability	that	makes	any	
system	worth	modelling	–	even	ecological	ones,	where	one	can	use	a	model	to	
analyse	 populations	 rather	 than	 throwing	 quadrats	 around	 to	 sample	 daisy	
populations.	

	

The	Logistical	Curve	
Between	1838	and	1847,	Pierre	François	Verhulst	introduced	his	“logistical	
curve”,		using	it	as	a	model	of	population	growth.	The	initial	stage	of	growth	is	
roughly	exponential	(geometric),	then	as	saturation	begins,	the	growth	slows	
to	a	more	linear	(arithmetic)	rate,	before	reaching	the	maximum	population	
for	the	given	system.		

	

(The	Lorenz	attractor,	developed	
in	1963	to	model	atmospheric	
convection	–	an	example	of	a	
chaotic	system)	



This	function	simply	results	in	an	S-shaped	curve,	where	certain	parameters	
can	be	altered	for	different	systems	:	

	

! ! = !
! + !!!(!!!!)	

e	-	the	natural	logarithm	base		

!!	–	the	x-value	of	the	sigmoid’s	midpoint	

L	–	the	curve’s	maximum	value	

k	–	the	logistic	growth	rate/	gradient	

	
	

This	model	is	used	in	chemistry	to	look	at	changes	in	reactants	and	products,	
medicine	to	model	the	growth	of	tumours,	and	even	in	linguistics	to	predict	
language	change.	In	terms	of	its	suitability	of	modelling	populations,	it’s	
suitable	for	modelling	populations	in	the	process	of	uninterrupted	growth	
(such	as	the	human	population,	where	the	death	rate	hasn’t	overtaken	birth	
rate),	but	not	so	much	for	those	whose	death	rate	overtakes	the	birth	rate	
temporarily,	due	to	factors	such	as	predation,	changes	in	food	availability,	or	
potentially	abrupt	climate	changes.		

(The	above	sigmoid	is	produced	when	L	=	2,	!!=	0,	and	k	=	3)	



	

The	Lotka-Volterra	Equations	
In	1910,	Polish-American	mathematician	Alfred	Lotka	published	a	paper	on	
autocatalytic	chemical	reactions,	more	or	less	using	the	logistical	curve	as	a	
model.	Later	on,	however,	in	1920,	Lotka	extended	Verhulst’s	model	with	the	
help	of	Soviet	mathematician	Andrey	Kolmogorov	into	organic	systems,	using	a	
plant	and	herbivorous	animal	species	as	an	example.	In	1925,	he	then	
published	his	equations	in	a	book	on	biomathematics,	which	was	closely	
followed	by	Italian	mathematician	Vito	Volterra	in	1926,	who	had	synthesised	
the	same	equations	to	analyse	fish	populations	in	the	Adriatic	Sea	to	explain	
the	findings	of	marine	biologist	Umberto	D’Ancona,	who	was	studying	
percentages	of	predatory	fish	caught	during	the	years	of	World	War	I.		
	
The	Lotka-Volterra	equations	are	a	pair	of	first-order	nonlinear	differential	
equations,	being	used	to	describe	the	dynamics	of	populations	in	a	biological	
system:	

!"
!" = !" − !"#	
!"
!" = !"# − !"	

!	-	the	number	of	prey	

!	-	the	number	of	predators	

!"
!"  and !"!" 	–	the	instantaneous	growth	rates	of	the	two	populations	

!,!, !, !	-	positive,	real	parameters	that	are	adjusted	based	on	the	type	of	interaction	
between	the	two	populations	

	

As	a	massively	simplified	model,	the	Lotka-Volterra	equation	makes	a	number	
of	assumptions,	not	necessarily	noticable	in	nature,	about	the	environments	
and	evolution	of	the	predator	and	prey	populations:	

1) The	prey	population	finds	ample	food	at	all	times.	
2) The	food	supply	of	the	predator	population	is	entirely	dependant	upon	

the	prey	population.	
3) The	rate	of	change	of	population	is	proportional	to	its	size.	



4) During	the	process,	the	environment	does	not	change	in	favour	of	one	
species,	and	genetic	adaptation	has	no	effect.	

5) Predators	have	limitless	appetites.	
6) The	system	is	deterministic	(no	randomness	involved)	and	continuous.	

In	terms	of	a	physical	meaning	of	the	equations,	it	is	fairly	easy	to	understand:	

	

	

!"
!" = !" − !"#	

The	prey	are	assumed	to	have	an	
unlimited	food	supply	and	to	
reproduce	exponentially,	unless	
subject	to	predation.	The	
exponential	growth	is	represented	
by	the	term	!",	and	the	rate	of	
predation	is	proportional	to	the	rate	
at	which	prey	and	predator	meet,	
represented	by	!"#,	so	that	if	either	
are	0,	then	there	is	no	predation.	

!"
!" = !"# − !"	

In	the	predator	equation,	!"#	
represents	the	growth	of	the	
predator	population	(similar	to	the	
!"	term	in	the	prey	equation,	
although	with	a	different	constant	
as	they	are	not	necessarily	equal).	
!"	accounts	for	the	loss	of	predators	
due	to	either	natural	death	or	
emigration,	leading	to	an	
exponential	decay	in	the	absence	of	
prey.	

(An	example	of	a	predator-prey	cycle	for	baboons	(prey)	and	
cheetahs	(predator))	



As	shown	above,	the	Lotka-Volterra	model	produces	a	nice	representation	of	
the	relationship	between	prey	and	predator	–	the	idea	of	a	cycle.	This	is	great	
in	that	it	can	be	used	as	a	basis	for	development	of	more	specific	prey-
predator	models	in	different	contexts,	but	it	doesn’t	allow	any	inferences	to	be	
made	about	how	other	biotic	and	abiotic	factors	such	as	climate	will	affect	the	
population	cycles.		

If	the	model	were	to	be	adjusted	to	include	more	variables,	the	system	would	
become	a	chaotic	one,	which	is	extremely	hard	to	model.	Chaotic	systems	are	
not	 actually	 random	 at	 all,	 even	 if	 they	 do	 exhibit	 seemingly	 random	
behaviour.		

The	key	property	of	a	chaotic	system	is	that	it	 is	deterministic.	A	term	coined	
by	 Laplace,	 determinism	 (more	 specifically	 classical	 determinism)	 is	 the	
concept	 of	 a	 clockwork	 universe,	 where	 all	 the	 most	 underlying	 and	
fundamental	 laws	 of	 the	 universe	 are	 known,	 so	 that	 –	 if	 enough	 is	 known	
about	a	system	or	an	element	–	its	entire	history	and	future	could	be	predicted	
with	 pinpoint	 accuracy.	 The	 uncertainty	 in	 chaotic	 systems	 inherently	 arises	
from	 the	 unfortunate	 prospect	 of	 us	 not	 having	 one	 unified	 theory	 for	 the	
entire	universe,	and	not	having	infinite	accuracy	when	measuring	variables	in	a	
system.	Infinitely	small	changes	in	initial	conditions	would	not	be	observed	by	
humans,	 but	 would	 result	 in	 a	 completely	 different	 outcome	 over	 time,	
although	we	would	observe	both	inputs	to	be	the	same.	It	is	true	indeed	that	
the	exact	same	inputs	would	result	in	the	same	outputs,	but	we	merely	cannot	
achieve	or	recognise	when	conditions	are	the	exact	same.		

The	Takeaway	Lesson	
Although	what	 I	 have	 just	 said	may	 seem	 to	 completely	 ruin	 the	 concept	 of	
modelling,	because	we	can	never	have	a	perfect	model,	it	is	important	to	note	
that	modelling	is	what	all	true	sciences	are.	One	clear	example	is	the	model	of	
the	 atom,	 which	 has	 undergone	 drastic	 change	 since	 the	 early	 days	 of	 the	
Ancient	 Greek	 philosophers,	 and	 even	 today	 there	 are	 intense	 debates	 over	
what	 an	 electron	 even	 is!	We	will	 never	 have	 pinpoint	 accuracy,	 and	 that	 is	
simply	 due	 to	 the	 fact	 that	 we	 cannot	 comprehend	 infinity,	 but	 we	 can	
continue	to	learn,	observe	and	appreciate	the	unknown,	and	get	a	decent	bite	
of	the	constantly	growing	cherry	that	is	human	knowledge.	
	

	



	

	

	
	
	
	
	

Thank You

We are truly honoured and humbled to have received your wonderful

Last year the charity gave away over 1,200 free real hair wigs to
children and young people.

We receive many cards and letters from families expressing their gratitude and 
telling us of the huge difference receiving a wig has made.

This is only possible because of your kind support and generosity.

Charity Reg. No. 1113172

Hakan Yadsan

Hair Donation

Thank you!
www.littleprincesses.org.uk



	

	

	
	
	
	
	
	
	

	



The	Man	of	Principles	
	
	

	
	
	
Grigori	Perelman	was	awarded	$1m	for	proving	one	of	the	
most	famous	open	questions	in	maths,	the	Poincaré	
Conjecture.	But	the	Russian	recluse	has	refused	to	accept	the	
cash.	He	had	already	turned	down	maths'	most	prestigious	
honour,	the	Fields	Medal	in	2006.	"If	the	proof	is	correct	then	
no	other	recognition	is	needed,"	he	reportedly	said.	The	
Poincaré	Conjecture	was	first	stated	in	1904	by	Henri	
Poincaré	and	concerns	the	behaviour	of	shapes	in	three	
dimensions.	Perelman	is	currently	unemployed	and	lives	a	
frugal	life	with	his	mother	in	St	Petersburg.	
	
	
	
Just	two	years	later,	in	November	2002,	a	Russian	
mathematician	posted	his	proof	of	the	Poincare	Conjecture	
on	the	Internet.	He	was	not	the	first	person	to	claim	he'd	
solved	the	Poincare-he	was	not	even	the	only	Russian	to	
post	a	putative	proof	of	the	conjecture	on	the	Internet	that	
year-but	his	proof	turned	out	to	be	right.		



And	then	things	did	not	go	according	to	plan-not	the	Clay	
Institute's	plan	or	any	other	plan	that	might	have	struck	a	
mathematician	as	reasonable.	Grigory	Perelman,	the	
Russian,	did	not	publish	his	work	in	a	refereed	journal.	He	
did	not	agree	to	vet	or	even	to	review	the	explications	of	his	
proof	written	by	others.	He	refused	numerous	job	offers	
from	the	world's	best	universities.	He	refused	to	accept	the	
Fields	Medal,	mathematics'	highest	honor,	which	would	have	
been	awarded	to	him	in	2006.	And	then	he	essentially	
withdrew	from	not	only	the	world's	mathematical	
conversation	but	also	most	of	his	fellow	humans'	
conversation.		
	
	
His	objection	to	the	Fields	Medal,	though	never	stated	as	
clearly,	seemed	to	have	been	twofold:	first,	he	no	longer	
considered	himself	a	mathematician	and	hence	could	not	
accept	a	prize	intended	for	the	encouragement	of	midcareer	
researchers;	and	second,	he	wanted	no	part	of	the	1CM,	with	
all	the	attendant	publicity,	speeches,	ceremony,	and	king	of	
Spain.		
	



Schlicter said, "Go down deep enough into anything, and you will find mathematics."  
 
This year we offered many academic activities in the maths department, and every 
activity is an opportunity for us to expand your intellectual capacity. These activities 
are for Stoics who desire to understand mathematics at a deeper level. 
  

  
Vertical Stretch sessions take place once a week. From September to January, we 
studied methods of solving linear and nonlinear integer equations (Number theory). 
From January to May (this is to be discussed) we studied a course advanced Calculus 
and more.  
  
 

 
 
	

	
Carl	Friedrich	Gauss	said,	"Mathematics	is	the	queen	of	the	sciences	and	number	
theory	is	the	queen	of	mathematics".	In	this	course,	we	started	with	the	
fundamental	concept	of	gcd	(greatest	common	divisor)	and	built	towards	
advanced	level	theorems	such	as	Euclid's	algorithm,	and	general	solution	to	
linear	Diophantine	Equations.	During	this	course,	we	have	seen	how	a	basic	
concept,	such	as	prime	decomposition	is	linked	to	the	Fundamental	Theorem	of	
arithmetic.	We	have	also	scratched	the	surface	of	unique	and	non-unique	
factorisation	domain.	We	have	continued	to	work	further	on	integer	equations.	



We	have	learnt	how	to	use	the	modular	arithmetic	to	solve	linear	simultaneous	
integer	equations.	We	have	also	studied	Euler	Totient	function	and	Fermat's	
little	theorem	in	this	course.	
	

	
We	started	to	this	course	by	giving	the	formal	definition	(epsilon-delta)	of	
continuity	and	limit,	including	left-hand	and	right-hand	limit.	After	that,	we	
studied	the	laws	of	limit	and	how	to	apply	these	laws	to	find	the	limit	(given	that	
it	exists)	of	rational	functions.	
	
We	have	linked	the	idea	of	limits	and	continuity	to	the	derivatives	and	studied	
the	derivative	of	a	function	at	a	point.	Thereon	we	embarked	on	to	the	numerical	
integration	building	towards	the	idea	of	the	infinitesimal	sum.	We	further	
studied	Riemann	summable	functions.	
The	highlight	of	this	course	has	been	the	study	of	the	Fundamental	Theorem	of	
Calculus	(F.T.C.).	We	have	carefully	studied	how	the	area	is	linked	to	the	tangent?	
That	is,	we	studied	integrals	and	derivative	and	how	F.T.C.	connect	the	two.	We	
have	finished	this	course	by	studying	double	integrals	(rectangular	and	over	the	
general	region)	in	cartesian	and	polar	coordinate	forms	primarily	focussing	on	
Fubini's	theorem	and	its	consequences.		
	
	
	
	
Final	weeks	of	this	academic	term,	we	studied	the	mathematics	of	quantum	
mechanics.	In	this	short	introductory	course,	we	have	covered	the	basics	of	
statistical	interpretation	by	starting	the	definition	of	the	modulus	square	of	the	
wavefunction.	We	further	studied	how	to	normalise	it	and	the	physical	meaning	
of	normalising	the	wave	function.	Using	probability	density	interpretation,	we	
learnt	how	to	calculate	the	expectation	values.	We	used	Fubini's	theorem	to	
work	out	the	area	of	bell-shaped	curves.	Using	Schrodinger's	equation,	we	have	
proved	that	once	the	wave	function	is	normalised,	it	remains	normalised.	
	
We	have	finished	this	course	by	calculation	expectation	values	for	position	and	
momentum,	then	testing	Heisenberg's	uncertainty	principle.		
 
 
 
 
 
 
 
 
 
 
 
 
 



 
 
“Mathematics is the door and key to the sciences”. — Roger Bacon 
 
 

 
 
 
In these weekly running sessions, we focused on problem-solving skills. This is a 
preparation for Stoics who are planning to study maths or mathematical sciences at 
the top end universities. We tackle MAT, Step I, II, III and world maths Olympiad 
questions.  
  
 
 
 
 
 
 
 
 



  

 
 
 
To	spread	the	love	of	rationality,	to	inspire	and	encourage	the	student	and	to	
advertise	the	most	sophisticated	and	disciplined	way	of	thinking,	we	have	
covered	challenging	topics	in	this	year's	maths	project.	We	started	by	
convergence	and	continuity	of	finite	and	infinite	sequences	and	series	this	year.	
After	formally	defining	convergence	and	divergence,	we	studied	the	strict	
condition	of	absolute	convergence	and	he	under	which	circumstances	infinite	
sequences	commute.	We	have	further	studied	Integral	tests,	Comparison	and	
limit	comparison	test,	Ratio	test,	root	test	and	alternating	series	test.	Thereon	we	
embarked	on	power	series	focusing	on	Taylor's	Theorem.	Taylor's	expansion	of	
multivariable	functions	and	using	Hessian	Matrix	to	work	out	the	nature	of	the	
stationary	points.	We	used	this	to	prove	a	historical	problem	called	the	Basel	
Problem.		
	
In	the	second	part	of	the	project,	we	studied	convex	functions.	We	started	off	
being	the	definition	of	convexity	and	proved	Hermite-Hadamard	Inequality	using	
this	definition.	We	have	then	determined	Jensen's	and	Young's	inequality.	Using	
these	result,	we	proved	and	looked	at	some	applications	of	Hölder's	inequality.		
 
 
 
 



Applications	of	Taylor	Series	
This	article	discusses	three	important	applications	of	Taylor	series:	

	1.	Using	Taylor	series	to	find	the	sum	of	a	series.	

	2.	Using	Taylor	series	to	evaluate	limits.	

	3.	Using	Taylor	polynomials	to	approximate	functions.	

	

Evaluating	Infinite	Series� 	

It	is	possible	to	use	Taylor	series	to	find	the	sums	of	many	different	infinite	series.	The	

following	examples	illustrate	this	idea.	

	

EXMAPLE	1			Find	the	sum	of	the	following	series:	

	

SOLUTION			The	Taylor	series	for	e^x	

	

The	sum	of	the	given	series	can	be	obtained	by	substituting	in	x=1:	

	

In	the	above	example,	note	that	we	get	a	different	series	for	every	value	of	x	that	we	plug	in.	
For	example,		

	

and	

	

	

	

	

	

	



Limits	Using	Power	Series	
When	taking	a	limit	as	x�0	,	you	can	often	simplify	things	by	substituting	in	a	power	series	
that	you	know.	

	

EXAMPLE	3		

SOLUTION				We	simply	plug	in	the	Taylor	series	for	sin	(x):	

	

	

	

	

	

	

Taylor	Polynomials	
A	partial	sum	of	a	Taylor	series	is	called	a	Taylor	polynomial.	For	example,	the	Taylor	
polynomials	for	are	e	^x:	

	
You	can	approximate	any	function	by	its	Taylor	polynomial:	

	
If	you	use	the	Taylor	polynomial	cantered	at	a,	then	+	the	approximation	will	be	particularly	
good	near	x=a.	



	
1st-degree	Taylor	polynomial	is	just	the	tangent	line	to	f(x)	at	x=a:	

This	is	often	called	the	linear	approximation	to	near	x=a,	i.e.	the	tangent	line	to	the	graph.	
Taylor	polynomials	can	be	viewed	as	a	generalization	of	linear	approximations.	In	particular,	
the	2nd-degree	Taylor	polynomial	is	sometimes	called	the	quadratic	approximation,	the	3rd-
degree	Taylor	polynomial	is	the	cubic	approximation	and	so	on	



	
	

	

	
	



	

	
	

	
	

	
	

	
	
	



	
	

	
	

	
	
	
	
	
	
	



	
	
	
	
	
	
	
	

	
	


